Sheep-dog Problem

Rajiv Mantena!, Bhanu Kiran Chaluvadi!, Clinton Fernandes', Kameswari Devi Ayyagari?

'Department of Mechanical Engineering and 2School of Computing, University of Utah

December 10, 2015

Abstract

In this paper, we try to explore the problem space
of planning the motion of a dynamic body by influ-
encing it with another dynamic body. To explore the
problem space, we apply this to the sheep dog prob-
lem where we program the robotic dog to herd the
sheep towards the goal.

1 Introduction

Motion planning plays a major part in the today’s
robotics scenario. Although, there has been a lot of
work done in planning the motion of a body between
initial state and the goal state, the problem space of
planning the motion of a body relative to another
body has been relatively unexplored.

We are trying to address the problem of moving
an object(or a set of objects) to a desired goal state
by influencing the object(or a set of objects) to be
moved using another object that already has a notion
of where the goal is.

1.1 Definitions

e Driver: The object or set of objects that are act-
ing as a driving force. They influence the other
objects in the environment by exerting either an
attractive or a repulsive force on the other set of
objects in the environment.

e Driven: The object or set of objects that are
being influenced by the driver. They are either
attracted or repulsed by the driver and driven
towards the goal.

e Environment: The space where the driver and
driven exist.

e Initial State: The initial state(position, velocity,
angle of orientation) of the driven in the envi-
ronment.

e Goal State: The state(position, angle, velocity)
that the driven needs to be directed to.

1.2 Assumptions

e All the objects(driver, driven and obstacles) fol-
low the laws of physics.

e The current state of every object in the environ-
ment at every instant in time are available or can
be computed.

e The driver has a sense of the goal and is capa-
ble of exerting an influential(either attractive or
repulsive) force on the driven.

We attempted to solve the problem of planning the
motion for the driven by exerting an influential force
on the driven by the driver by solving the sheep-dog
problem which will be discussed below.

1.3 Sheep-Dog problem

Let us consider a flock of sheep in a grazing field. The
sheep graze around in the field. Let us consider the
problem of planning a robotic dog that would herd
the flock of sheep towards the goal. The sheep would
be scared of dog. So,the sheep will be repulsed by
the dog, moving away from the dog. We assume that
the dog has a sense of where the goal is and, the dog
while repulsing the sheep away from itself also moves
the sheep towards the goal.

The sheep in the above problem are the driven,
the dog the driver and the grazing field, the environ-
ment. In this paper, we try to plan the motion for a
robotic dog that would herd sheep towards the goal.
To solve this problem, we use the concept of potential
fields [2].

2 Motivation

2.1 Potential Field Theory

Every stationary body has potential energy associ-
ated with it. Force is a derivative of the potential
energy. The potential field theory works with the
concept that when a robot approaches the stationary
body in the environment, the stationary body exerts
a force that could either be repulsive or attractive in
nature on a robot. The magnitude of the force ex-
erted on the robot depends on the distance between
the object and the robot. The farther the robot is
from the object, the weaker the force exerted on the
robot.

In the approach that we use, we intended to use the
potential field theory to achieve the replusive force
between the dynamic objects, rather than using it
to plan the motion of the objects. Traditionally, po-
tential fields have been used to plan the motion of
objects by implimenting the concept of objects tend-
ing to move from higher potential positions to lower
potential positions. We, however didn’t follow this
approach. As dynamic objects have kinematic en-
ergy, they apply a force either repulsive or attractive
on other objects. In our context, the driver exerts
a repulsive force on the bodies being driven, driving
them away from the driver. We use this phenomenon

ts > Ws = random (£3)

Fig 1: Randomness of dynamic objects

to use the dog to herd the flock of sheep away from
the dog and towards the goal. This can be repre-
sented by the below equation.
Fds X dds
Where, Fy; represents the repulsive force applied
by the dog on the sheep and dgs is the distance be-
tween the dog and the sheep.

3 Methods

We decided to initially implement this in 2D, and
then port it into 3D. We decided to use Box2D [1] as
the simulation environment. Box2D is an open source
C++ physics engine that simulates rigid bodies. The
dog and the sheep are represented as 2-Dimensional
objects in the Box2D environment. (Note: Defend
why Box2D)

3.1 Environment Setup

e A dynamic body in the Box2D environment to
represent a dog

e Five dynamic bodies in the Box2D environment
to represent sheep.

e Static bodies that represent boundaries and ob-
stacles (if any).

e Random motion is assigned to the sheep in the
environment. At any instant in time, for the

goal

dog @
(D

@ sheep

®

Force

@
@

sphere of influence

Fig 2(a): Dog, Sheep and Goal at initial positions Fig 2(c): Dog moves forward which applies a repul-
©) sive force on sheep towards the goal, until it finds
another sheep which is farther than current sheep

©)

) ®

Fig 2(b): Dog aligns itself behind the farthest sheep, Fig 2(d): Dog executes the same set of steps on the
ensuring the sheep doesn’t fall within its sphere of new sheep object
influence

sheep, the randomness is defined only in the for-
ward direction as sheep do not move sidewards
or backwards without first turning in that par-
ticular direction.

To achieve this non-holonomic motion [3] [4], we
have assumed that the velocity of the objects
stays fixed unless it collides with something and
the randomness is taken care of by varying the
angular velocity. We have assumed the dog’s and
sheep’s speeds to be 3 units per timestep and 1
unit per timestep respectively. All the experi-
ments have been performed maintaining these to
be constant. A random value would be applied

to be the angular velocity of the object, w. This
randomness is defined by the below function.
w = (rand()%6) — 3

We used this random function to associate nec-
essary randomness for the objects. The angular
velocity is randomly assigned a value between -3
to +3 radians/sec®. Figure 1 explains how the
object motion is obtained based on this function.
The figure depicts the path of an object after 4
timesteps. The region between the gray splines
after the object at t5 shows the possible position
of the object at the next timestep.

The dog is introduced in the environment at a
random position.

The dog at every time step, finds the sheep that is
farthest from the goal, aligns itself behind the sheep
such that, the dog, sheep and goal are collinear. At
this point, the sheep is still outside the dog’s sphere
of influence. Figure 2(a) and 2(b) represent this se-
quence of actions. The dog now starts to proceed
towards the goal. Once the sheep falls within the
sphere of influence, a repulsive force is applied on the
sheep. As the dog, sheep and goal are all collinear,
the repulsive force is always towards the goal. The
same is depicted in Figure 2(c). The dog will proceed
towards the goal until another sheep is farther than
the current one. If the above condition occurs, the
dog aligns behind it, similar to how it had aligned be-
hind the previous sheep. Figure 2(d) represents how
the dog aligns and applies a repulsive force on current
sheep. The process repeats until all the sheep have
reached the goal.

Algorithm 1 Algorithm for herding the sheep with-
out heuristics

pos = Position of the Dog

if pos is valid then
FS = Farthest sheep from the goal
Align F'S towards the goal
Apply repulsive force on FS

end if

for s =0 to number of sheep do
if S is not F'S then

Continue grazing

end if

end for

We optimized the algorithm further by introducing
the following heuristics to the algorithm.

e HG : Distance between each sheep and the goal.
e HD : Distance between each sheep and the dog.
e HYV : Velocity heuristic for each sheep.

We also introduced a scaling factor to each of the
heuristics. In the optimized version of the algorithm,
the final heuristic with the weights added, is calcu-
lated for each sheep. The dog picks the sheep with
the largest heuristic, aligns itself behind the sheep

and applies a repulsive force on the sheep towards
the goal. This is outlined in Algorithm 2. By varying
the scaling factors for each heuristic, we conducted
experiments to analyse what scaling factor applied
to which heuristic would result in optimum results.
The results and experiments will be discussed in the
sections below.

Algorithm 2 Algorithm for herding the sheep with
heuristics

for s =0 to number of sheep do
HD = distance between s and the dog
HG = distance between s and the goal
HV = Velocity of sheep
FH=SF1xHD+ SF2+«HG+ SF3+« HV
end for
pos = Position of the Dog
if pos is valid then
FS = Find the sheep with the highest FH
Align FS towards the goal
Apply repulsive force on FS
end if
for s =0 to number of sheep do
if S is not F'S then
Continue grazing
end if
end for

4 Experimental Analysis

During our initial analysis, we have recorded the
number of iterations executed to successfully gather
the sheep into the pen and the time taken from begin
to end. It has been observed that the time taken and
the number of iterations performed are linearly pro-
portional to each other. As each iteration executes
at a specific timestep, this relationship is explained.
Hence, we have taken into account only the time ex-
ecuted as it provides a much better representation
for intuitive understanding. All the times mentioned
below are average of 3 individual times from inde-
pendent experimental executions. We have noticed
significant deviation in execution times for the same

Fig 3: Path traced by the dog based on Algorithm 1

case due to the presence of randomness in the posi-
tioning and the motion of sheep.

From our experimental results performed with Al-
gorithm 1, we noticed an average execution time of
54 seconds (approx. 3231 iterations). The algorithm
was successful 9 out of 10 times. It failed once in
10 times whenever a sheep stays in contact with an
obstacle or boundary and the dog tries to apply a
force further towards the static objects, resulting in
a locked situation of the sheep. Figure 3 shows the
path traced by the dog using Algorithm 1. It could
be noted that the distance is proportional to the time
taken for execution, as the objects trace only a fixed
distance in a timestep.

However, the findings from execution of Algorithm
2 have been much more optimistic, with certain exe-
cutions taking as less as 17 seconds. For initial tests,
we have chosen random weightages for each of the
three heuristics : HG being 0.5, HV being 0.05 and
HD being 0.5. With these weightages, we were able
to reduce the average execution time to 34.51 sec-
onds. To further tune the weights of the heuristics,
we followed an approach which is explained below.

Firstly, we have tuned HG and HD keeping the HV
constant. We chose HD and HG as per the below

Average execution time

HG=1
HD=0

G

H HG=0.4
HD

HD=0.6

HG=10.2
HD=0.8

HGE=10

=0.8 HG=08
=0.2 HD=1

2 HO=0.4

Weightage of HG and HD heuristics

Fig 4: Graph showing the trend of execution time vs
weights of HD and HG

conditions.
0< HG <1
O0<HD<1
HG=1-HD
HV =0.05

The average execution time has been measured
with varying HG from 0 to 1 in steps of 0.2. Fig-
ure 4 represents the findings. We observed the least
average times for HG = 0.4 and HD = 0.6. These
values have been saved for further tests, as they were
the most optimal scaling factors for HG and HD..

Later, once we have obtained the most efficient
scaling factors for HG and HD heuristics, we var-
ied HV while keeping HG = 0.4 and HD = 0.6. The
trend of the average execution times is represented in
Figure 5. We have observed the least average times
at HV = 0.25. Hence, we noted the most suitable
scaling factor for HV to be 0.25.

With the above identified optimal scaling factor
values, experiments have been repeated with Algo-
rithm 2 and we have observed the average execution
time to have reduced to 27.14 seconds. Figure 6 il-
lustrates the path traced by the dog by using the
Algorithm 2. Comparing Figure 3 and Figure 6, we
infer that the path that the dog traced using Algo-
rithm 2 is much shorter than the path traced using
Algorithm 1.

5 Future Work

During our implementation, we noticed that there are
several optimizations that could be further applied to
our algorithm.

Lia
=1

25 e We think that introducing multiple dogs at
20 strategic positions in the environment would
considerably reduce the time taken by the
drivers(dogs) to herd the driven objects(sheep).
For instance, the dogs could be placed at the
5 four different corners in the environment and
0 each dog can herd the sheep in it’s own quad-
5 1.05 rant. Since the dogs would be working together
c simultaneoulsy to push the sheep that are local
to them, we think that the overall distance trav-
elled by the dogs to herd the sheep and the time
taken for the sheep to be herded will be reduced.

Average execution time

25

[=1

45 0.65 08
Weightage of velocity heuristi
Fig 5: Graph showing the trend of execution time vs
weight of HV

e The sheep have a tendency to move in flocks. So,
a force of attraction between the sheep within
particular range of each other could be intro-
duced. We haven’t currently accounted for the
force of attraction between the sheep. We think

\
T~
\

Fig 6: Path traced by the dog based on Algorithm 2

that this would also considerably reduce the time
needed to herd the flock of sheep.

In our current approach we are only taking into
account the current position of the sheep. We
could also predict the position of the sheep in
the future and plan the motion of the dog based
on the future position of the sheep. We think
that proactively finding the positon of the sheep
and planning the motion of the dog accordingly
would considerably reduce the taken to herd the
sheep towards the goal.

In our current approach, we take into account
the distance of each sheep to the goal. We could
compute the sum of the distance between each
sheep and the goal and plan the motion of the
dog in such a way that the total distance trav-
elled by the sheep is reduced. We think that it
would be interesting to see how the addition of
this heuristic would impact the total time taken
to herd the flock to the goal.

6 Conclusion

We could successfully direct the sheep towards the
goal based on the motion of the dog. We think that
exploring the field of planning motion of a dynamic
object governed by another dynamic object seems ex-
citing and feasible.

We would like to thank Tucker Hermans for all the
guidance and help provided during the course of the
project.

References

[1] C++ based physics engine-box2d. http://box2d.
org/.

[2] Potential fields for real time simulation.
http://aigamedev.com/open/tutorials/
potential-fields/.

[3] JiapoNGa L1, SHIRONG L1u, B. Z. X. Z. Rrt-a* motion

planning algorithm for non-holonomic mobile robot.
SICE Annual Conference 2014.

[4] R. ZuLni, R. FiERRO, G. C., AND LEWIs, F. Mo-
tion planning and control for non-holonomic mobile
robots.

